可移动式高通量紫外-可见光荧光仪——MULTIPLEX ON-THE-GO
日期:2017-02-23 11:28:54

主要功能

高通量获取叶绿素、类黄酮、花青素、氮素状态及吸收状况、冠层孔隙度等多个植物表型数据和 12 种原始荧光信号。


测量参数

氮平衡指数

叶绿素指数

类黄酮指数

花青素指数

冠层孔隙度

氮素吸收利用情况

12 种荧光信号


应用领域

品种筛选

植物生理学

果实成熟期判定

化肥、农药筛选


主要技术参数

Multiplex 技术参数

测量材料:叶片和果实

测量面积:80 cm2(可定制其他面积)

采集频率:60 Hz(最大可达 200 Hz)

测量距离:200 mm

工作温度:5 - 45 摄氏度

供电:通过 FA-BOX

输出:通过 RS232 至 FA-BOX

重量:3 kg

尺寸:170 * 170 mm

防水等级:IP65

FA-BOX 技术参数

数据分类:两种(通过短按和长按键实现)

可兼容不同型号的 GPS、RFID 系统或其他相关传感器

连接:1 个 Multiplex;1 个 GPS;4 个 RS232,1 个可选的 CAN

供电:12V DC(可通过车、蓄电池等供电)

用户界面:包含 4 个功能键,以及警告提醒

存储:USB(16 G)

重量:600 g

尺寸:150 * 105 * 55 mm

防水等级:IP65


选购指南

配置:

Multiplex 传感器,FA-BOX 数采和 GPS。


0000.png

Multiplex On-the-go 系统组成


数据格式:


数据格式.png



应用案例

1.  果实测量


果实测量.png

Multiplex On-the-go 果实测量

果实特性实时描述,制作收获期地图,指导选择性收获。


2.  叶片测量


叶片测量.png

Multiplex On-the-go 叶片测量

冠层孔隙度调查;氮素状态、吸收情况调查;缺绿病调查;胁迫区域鉴定。


3.  集成至表型平台测量


表型平台测量.png

Multiplex On-the-go 集成至表型平台测量

高通量获取叶绿素、类黄酮、花青素、氮素状态等植物表型测量参数。


4.  施肥方案筛选

施肥方案对比.jpg

不同施肥方案对比



产地:法国 Force-A



参考文献

Cerovic ZG, Moise N, Agati G, Latouche G, Ben Ghozlen N, Meyer S(2008). New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. J. Food Comp. Anal., 21, 650–654. (Dx & Mx)

Bramley RGV, Le Moigne M, Evain S, Ouzman J, Florin L, Fadaili EM, Hinze CJ, Cerovic ZG(2011). On–the–go sensing of grape berry anthocyanins during commercial harvest: development and prospects. Aust. J. Grape Wine Res. doi:10.1111/j.1755–0238.2011.00158.x. (Mx)

Cerovic ZG, Goutouly JP, Hilbert G, Destrac Irvine A, Martinon V, Moise N(2009). Mapping winegrape quality attributes using portable fluorescence–based sensors. In FRUTIC 09. Conception, Chile. (Ed. S Best) (Progap INIA, Chillian, Chile), 301–310. (Mx)

Zhang Y, Tremblay N, Zhu J(2012). A first comparison of Multiplex® for the assessment of corn nitrogen status. Journal of Food, Agriculture & Environment, 10(1), 1008–1016. (Mx)

Baluja J, Diago M.P, Goovaerts P, Tardaguila J(2012). Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: relationships with vine vigour and yield. Precision Agri., doi: 10.1007/s11119–012–9261–x. (Mx)

Agati G, D'Onofrio C, Ducci E, Cuzzola A, Remorini D, Tuccio L, Lazzini F, Mattii G(2013). Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white vitis vinifera wine grapes. J Agric Food Chem. (Mx)

Bürling K, Cerovic ZG, Cornic G, Ducruet JM, Noga G, Hunsche M(2013). Fluorescence–based sensing of drought–induced stress in the vegetative phase of four contrasting wheat genotypes. Environmental and Experimental Botany. 89, 51–59. (Dx & Mx)

Bahar A, Kapluno T, Zutahy Y, Daus A, Lurie S, Lichter A(2012). Auto-fluorescence for analysis of ripening in Thompson Seedless and colour in Crimson Seedless table grapes. Australian Journal of Grape and Wine Research, 18(3), 353-359.

Matese A, Capraro F, Primicerio J, Gualato G, Di Gennaro SF, Agati G(2013). Mapping of vine vigor by UAV and anthocyanin content by a non–destructive fluorescence technique. Precision Agriculture, 13, 201–208. (Mx)

Baluja J, Diago MP, Goovaerts P, Tardaguila J(2012). Spatio–temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing Australian Journal of Grape and Wine Research, 18(2), 173–182. (Mx)

Giovanni Agatia, Lara Foschi, Nicola Grossi, Marco Volterrani(2015). In field non-invasive sensing of the nitrogen status in hybrid bermudagrass (Cynodon dactylon × C. transvaalensis Burtt Davy) by a fluorescence-based method. European Journal of Agronomy, 63, 89-96.

Longchamps L, Khosla R(2014). Early detection of nitrogen variability in maize using fluorescence. Agronomy Journal. 106(2), 511-518. (Mx)

Bramley R(2012). Mixed fortunes in crop quality sensing. 15th Symposium on Precision Agriculture in Australasia, Mildura, 22-26.

Cerovic ZG, Ben Ghozlen N, Milhade C, Obert M, Debuisson S, Le Moigne M(2015). Non-destructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field. Journal of Agricultural and Food Chemistry, 63, 3669–3680. (Dx)

Agati G, Foschi L, Grossi N, Guglielminetti L, Cerovic ZG, Volterrani M(2013). Fluorescence–based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. European Journal of Agronomy, 45, 39–51. (Mx)

Diago MP, Rey Carames C, Le Moigne M, Fadaili Em, Tardaguila J, Cerovic ZG(2016). Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Australian Journal of Grape and Wine Research, 22(3), 438-449.

Scoging P, Siko S, Taylor R(2014). Calibration of a hand–held instrument for measuring condensed tannin concentration based on UV– and red–excited fluorescence. African Journal of Range & Forage Science, 31(1),  1–4. (Dx)

Galambošová J, Macak M, Zivcak M, Rataj V, Slamka P, Olsovska, K(2014). Comparison of spectral reflectance and multispectrally induced fluorescence to determine winter wheat nitrogen deficit.  (Mx)

Dybro N(2015). Agronomy based crop production system. 2015 ASABE Annual International.

Mercenaro L, Usai G, Fadda C, Nieddu G, del Caro A(2016). Intra-varietal agronomical variability in Vitis vinifera L. cv. Cannonau Investigated by Fluorescence, Texture and Colorimetric Analysis. S. Afr. J. Enol. Vitic.,  37(1), 67-78.

Galambošová J, Macák M, Živčák M, Rataj V, Slamka P, Olšovská, K. (2014) Comparison of spectral reflectance and multispectrally induced fluorescence to determine winter wheat nitrogen deficit. Advanced Materials Research, 1059, 127-133. (Mx)

Song XY, Wang JH, Gu XH, Xu XG(2015). Winter wheat GPC estimation with fluorescence-based sensor measurements of canopy. SPIE Proceedings, 9637, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, 96371L , doi:10.1117/12.2195289.

Saiz-Rubio V, Rovira-Mas F(2016). Preliminary Approach for Real-time Mapping of Vineyards from an Autonomous Ground Robot. 2016 ASABE Annual International Meeting.

Peteinatos GG, Korsaeth A, Berge T, Gerhards R(2016). Using Optical Sensors to Identify Water Deprivation, Nitrogen Shortage, Weed Presence and Fungal Infection in Wheat. Agriculture, 6(2), 24, doi:10.3390/agriculture6020024.

Caramés CR(2015). The spatial variability of vegetative status in vineyards using non-destructive sensors.   

Tisseyre B(2012). Sensing systems embedded in machines: towards a better management of operations in viticulture. ISHS Acta Horticulturae 978: I International Workshop on Vineyard Mechanization and Grape and Wine Quality. 10.17660/ActaHortic.2013.978.1.

Zecha CW, Link J, Claupein W(2013). Mobile sensor platforms: categorisation and research applications in precision farming. J. Sens. Sens. Syst., 2, 51–72.


收 藏